266-572-755
Этот e-mail защищен от спам-ботов. Для его просмотра в вашем браузере должна быть включена поддержка Java-script
Независимая Пресса.РУ
Free-Press.ru
Здоровье
Главное меню
ИНФОРМЕРЫ
Энергетика мышечной деятельностиНи одно движение не может быть выполнено без затрат энергии. Единственным универсальным и прямым источником энергии для мышечного сокращения служит аденозинтрифосфат - АТФ: без него поперечные «мостики» лишены энергии и актиновые нити не могут скользить вдоль миозиновых, сокращения мышечного волокна не происходит. АТФ относится к высокоэнергетическим (макроэргическим) фосфатным соединениям, при расщеплении (гидролизе) которого выделяется около 10 ккал/кг свободней энергии.

При активизации мышцы происходит усиленный гидролиз АТФ, поэтому интенсивность энергетического обмена возрастает в 100-1000 раз по сравнению с уровнем покоя. Однако, запасы АТФ в мышцах сравнительно ничтожны и их может хватить лишь на 2-3 секунды интенсивной работы. В реальных условиях для того, чтобы мышцы могли длительно поддерживать свою сократительную способность, должно происходить постоянное восстановление (ресинтез) АТФ с той же скоростью, с какой он расходуется. В качестве источников энергии при этом используются углеводы, жиры и белки. При полном или частичном расщеплении этих веществ освобождается часть энергии, аккумулированная в их химических связях. Эта освободившаяся энергия и обеспечивает ресинтез АТФ (см. табл. 2).

Источники энергии

Энерго­емкость, кДж

Возможная про­должительность работы, с

АТФ

4 - 5

2 - 3

Креатинфосфат (КрФ)

14 - 15

15 - 20

Гликоген + глюкоза

4600 -13000

120 - 240

Жиры

300000 - 400000

более 240

Таблица 2. Энергетические резервы человека (с массой тела 75 кг)

Биоэнергетические возможности организма являются наиболее важным фактором, лимитирующим его физическую работоспособность. Образование энергии для обеспечения мышечной работы может осуществляться анаэробным (бескислородным) и аэробным (окислительным) путем. В зависимости от биохимических особенностей протекающих при этом процессов принято выделять три обобщенных энергетических системы, обеспечивающих физическую работоспособность человека:

  • алактатная анаэробная, или фосфагенная, связанная с процессами ресинтеза АТФ преимущественно за счет энергии другого высокоэнергетического фосфатного соединения - креатинфосфата (КрФ);
  • гликолитическая (лактацидная) анаэробная, обеспечивающая ресинтез АТФ и КрФ за счет реакций анаэробного расщепления гликогена или глюкозы до молочной кислоты (МК);
  • аэробная (окислительная), связанная с возможностью выполнения работы за счет окисления энергетических субстратов, в качестве которых могут использоваться углеводы, жиры, белки при одновременном увеличении доставки и утилизации кислорода в работающих мышцах.

Каждый из перечисленных биоэнергетических компонентов физической работоспособности характеризуется критериями мощности, емкости и эффективности (см.рис 8, табл. 3).
Критерий мощности оценивает то максимальное количество энергии в единицу времени, которое может быть обеспечено каждой из метаболических систем.
Критерий емкости оценивает доступные для использования общие запасы энергетических веществ в организме, или общее количество выполненной работы за счет данного компонента.
Критерий эффективности показывает, какое количество внешней (механической) работы может быть выполнено на каждую единицу затрачиваемой энергии.

Метаболичес­кий процесс

Критерии мощности

Максималь­ная энерге­тическая
ёмкость, кДж/кГ

Макси­мальная мощ­ность, кДж/ кГ-мин

Время
достиже­ния мак.
мощи. физической ра­боты, с

Время удержа­нии !>*>.> тоспссоб-ности на уровне макс мощн.. с

Ллактатный анаэробный

3770

2-  3

б- 8

630

Гликолити-
ческий анаэробный

2500

13- 20

90 - 250

1050

Аэробный

1250

00-180

360-600

Бесконечно

Таблица 3. Основные биоэнергетические характеристики метаболических процессов - источников энергии при мышечной деятельности       

Фосфагенная система представляет собой наиболее быстро мобилизуемый источник энергии. Ресинтез АТФ за счет креатинфосфата во время мышечной работы осуществляется почти мгновенно. При отщеплении фосфатной группы от КрФ высвобождается большое количество энергии, которая непосредственно используется для восстановления АТФ. Поэтому КрФ является самым первым энергетическим резервом мышц, используемым как немедленный источник регенерации АТФ. АТФ и КрФ действуют как единая система энергоснабжения мышечной деятельности. Эта система обладает наибольшей мощностью по сравнению с гликолитической и аэробной, и играет основную роль в обеспечении кратковременной работы предельной мощности, осуществляемой с максимальными по силе и скорости сокращениями мышц: при выполнении кратковременных усилий «взрывного» характера, спуртов, рывков, как, например, спринтерский бег, прыжки, метания или удары рукой и ногой в рукопашном бою и т. п. Наибольшая мощность алактатного анаэробного процесса достигается в упражнениях продолжительностью 5-6 секунд и у высоко подготовленных спортсменов достигает уровня 3700 кДж/кГ в минуту. Однако емкость этой системы невелика в связи с ограниченностью запасов АТФ и КрФ в мышцах. Вместе с тем, время удержания максимальной анаэробной мощности зависит не столько от емкости фосфагенной системы, сколько от той ее части, котораяможет быть мобилизована при работе с максимальной мощностью. Расходуемое количество КрФ во время выполнения упражнений максимальной мощности составляет всего лишь примерно одну треть от его общих внутримышечных запасов. Поэтому продолжительность работы максимальной мощности обычно даже у высококвалифицированных спортсменов не превышает 15-20 секунд.

Энергетика мышечной деятельности 

Рис. 8. Динамика скорости энергопоставляющих процессов в работающих мышцах в зависимости от продолжительности упражнения (по Волкову Н. И., 1986).

Гликолитическая анаэробная система характеризуется достаточно большой мощностью, достигая у высокотренированных людей уровня примерно 2500 кДж/кГ в минуту. Энергетическими субстратами при этом служат углеводы - гликоген и глюкоза. Гликоген, запасаемый в мышечных клетках и печени - это цепочка молекул глюкозы (глюкозных единиц). При расщеплении гликогена его глюкозные единицы последовательно отщепляются. Каждая глюкозная единица из гликогена восстанавливает 3 молекулы АТФ, а молекула глюкозы - только 2 молекулы АТФ. Из каждой молекулы глюкозы образуется 2 молекулы молочной кислоты (МК). Поэтому при большой мощности и продолжительности гликолитической анаэробной работы в мышцах образуется значительное количество МК Накапливающаяся в работающих мышечных клетках МК легко диффундирует в кровь и, до определенной степени концентрации, связывается буферными системами крови для сохранения внутренней среды организма (гомео-стазиса). Если количество МК, образующейся в процессе выполнения работы гликолитической анаэробной направленности, превышает возможности буферных систем крови, то это приводит к их быстрому исчерпанию и вызывает сдвиг кислотно-щелочного равновесия крови в кислую сторону. В конечном итоге, это вызывает угнетение ключевых ферментов анаэробного гликолиза, вплоть до полного тормо¬жения их активности. При этом снижается скорость и самого гликолиза. Значительное закисление приводит также к уменьшению скорости аяактатного анаэробного процесса и общему снижению мощности работы.

Продолжительность работы в гликолити-ческом анаэробном режиме лимитируется в основном не количеством (емкостью) ее энергетических субстратов, а уровнем концентрации МК и степенью тканевой адаптации к кислотным сдвигам в мышцах и крови. Во время выполнения мышечной работы, обеспечиваемой преимущественно анаэробным гликолизом, резкого истощения мышечного гликогена и глюкозы в крови и печени не происходит. В процессе физической подготовки гипогликемия может возникнуть по другим причинам.

Для высокого уровня проявления гликолитической анаэробной способности (специальной выносливости) существенное значение имеет степень тканевой адаптации к происходящим при этом сдвигам кислотно-щелочного равновесия. Здесь особо выделяется фактор психической устойчивости, который позволяет при напряженной мышечной деятельности волевым усилием преодолевать возникающие с развитием утомления болезненные ощущения в работающих мышцах и продолжать выполнять работу, несмотря на усиливающееся стремление к ее прекращению.

При переходе от состояния покоя к мышечной деятельности потребность в кислороде (его запрос) возрастает во много раз. Однако, необходимо по крайней мере 1-2 минуты, чтобы усилилась деятельность кардио-респираторной системы, и обогащенная кислородом кровь могла быть доставлена к работающим мышцам. Потребление кислорода работающими мышцами увеличивается постепенно, по мере усиления деятельности систем вегетативного обеспечения. С увеличением длительности упражнений до 5-6 минут быстро наращивается скорость процессов аэробного образования энергии и, при увеличении продолжительности работы более 10 минут, энергообеспечение осуществляется уже почти целиком за счет аэробных процессов.

Однако, мощность аэробной системы энергообеспечения примерно в 3 раза ниже мощности фосфагенной, и в 2 раза - мощности анаэробной гликолитической системы (см. табл. 3).
Вместе с тем, аэробный механизм ресинтеза АТФ отличается наибольшей производительностью и экономичностью. В повседневных условиях жизни на его долю приходится иногда более 90% от общего количества энергопродукции организма. В качестве субстратов окисления при этом используются все основные питательные вещества: углеводы, жиры в виде жирных кислот и глицерина, белки в виде аминокислот. Вклад белков в общий объем аэробной энергопродукции очень мал. А вот углеводы и жиры используются в качестве субстратов аэробного окисления до тех пор, пока они доступны мышцам.


 

Аэробное расщепление углеводов до определенной стадии (до образования пировиног-радной кислоты) осуществляется так же, как и при анаэробном гликолизе. Но в аэробных условиях пировиноградная кислота не превращается в молочную кислоту, а окисляется далее до углекислого газа и воды, которые легко выводятся из организма. При этом из одной глюкозной единицы гликогена в конечном итоге образуется 39 молекул АТФ. Таким образом, аэробное окисление гликогена более эффективно, чем анаэробное. Еще больше энергии выделяется при окислении жиров. В среднем 1 моль смеси различных специфических организму человека жирных кислот обеспечивает ресинтез 138 молей АТФ. При одинаковом по весу расходе гликогена и жирных кислот, последние обеспечивают почти в три раза больше энергии, чем углеводы. Жиры, таким образом, обладают наибольшей энергоёмкостью из всех биоэнергетических субстратов (см. табл. 4).
Чем выше относительная мощность аэробной работы, тем выше относительный вклад в энергопродукцию углеводов, и меньше жиров.

Между мощностью физической работы аэробного характера и скоростью потребления кислорода существует линейная зависимость, поэтому интенсивность аэробной работы можно охарактеризовать скоростью потребления кислорода. При определенной мощности физической нагрузки достигается индивидуальное для каждого человека максимальное потребление кислорода (МПК), показатель которого является интегральным критерием мощности аэробной системы энергообеспечения. Мощность физической нагрузки (или скорость передвижения), при которой достигается МПК, называется критической. У молодых здоровых нетренированных мужчин МПК составляет в среднем 40-50 мл/кГ-мин, а у высокотренированных спортсменов в видах спорта на выносливость - достигает 80-90 мл/кГ-мин.

При равномерной непрерывной работе, если ЧСС не превышает 150-160 уд/мин, скорость потребления кислорода возрастает до такой величины, которая запрашивается работающими мышцами, а организм способен удовлетворять этот «запрос». Работа на данном уровне мощности физической нагрузки при «устойчивом состоянии» метаболических процессов может продолжаться достаточно долго (см. рис. 9).
При возрастании интенсивности работы, когда ЧСС увеличивается до 170-190 уд/мин, «устойчивое состояние» не устанавливается, хотя потребление кислорода возрастает до достижения МПК. Максимальный уровень потребления кислорода даже у тренированных людей не может поддерживаться долго - больше 6-8 минут.

Биоэнергети­ческие субстраты

Анаэробный метаболизм

Аэробный метаболизм

АТФ

КрФ

Глюкоза

Глюкоза

Жиры

Белки

Энергоёмкость

10

10

50

700

2400

7200

Таблица 4. Сравнительная ёмкость источников энергии мышечного сокращения (на 1 моль субстрата)

Если мощность работы превысила уровень МПК, то устойчивое состояние работоспособности не устанавливается, т. е. возникает ложное устойчивое состояние».При такой работе потребность организма в кислороде полностью не удовлетворяется, так как уже исчерпаны возможности сердечнососудистой системы по его доставке к работающим мышцам или исчерпана окислительная способность дыхательных ферме тов в мышечных клетках (рис. 10).

В условиях кислородного дефицита активизируются анаэробные системы ресинтеза АТФ. С началом интенсивной работы и в первые секунды её выполнения, при срабатывании» организма или при резких кратковременных увеличениях мощности работы (<спуртах»), преимущественное значение для энергообеспечения имеет фосфагенная система. Но по мере исчерпания ей энергетических резервов в работающих мышцах, начинает возрастать роль анаэробного гликолиза. Организм при этом работает как бы «в долг». Этот кислородный «долг» устраняется во время отдыха или при существенном снижении мощности работы. При этом восстановление израсходованных фосфагенов (АТФ+КрФ) происходит полностью через 3-5 минут, а наполовину - за 25-30 секунд отдыха. Это так называемый быстрый (алактатный) компонент кислородного долга. Та же его часть, которая отражает степень участия в работе анаэробного гликолиза и, следовательно, восстановление израсходованных субстратов — полностью устраняется лишь за 1,5-2,0 часа, а наполовину - за 15-30 минут. Это медленный (лактатный) компонент кислородного долга (см. рис. 10).

Образование молочной кислоты в мышечных клетках имеет место с началом практически любой, даже преимущественно аэроб¬ной физической работы. Однако, содержание МК в крови во время легкой работы мало отличается от уровня покоя. При увеличении мощности работы и возрастании потребления кислорода более 50% от МПК, кривая накопления МК в крови резко поднимается (см.рис. 11). Эта граница выраженного перехода от преимущественно аэробного энергообеспечения работы к смешанному аэробно-анаэробному, когда начинают активизироваться анаэробные процессы, называется анаэробным порогом, или порогом анаэробного обмена (ПАЛО). Если рабочая нагрузка превышает уровень ПАН О, в работающих мышцах и в крови начинает интенсивно накапливаться молочная кислота, тяжесть физической работы возрастает и она рассматривается в физиологии труда и спорта как напряженная работа смешанной аэробно-анаэробной направленности. Показатели ПАН О являются критериями аэробной эффективности.

Энергетика мышечной деятельности 

Рис 10. Кислородный приход, кислородный дефицит и кислородный долг при длительной работе разной мощности. А -при легкой, Б - при тяжелой, и В - при истощающей работе; I - период врабатывания; II - устойчивое (А, Б) и ложное устойчивое (В) состояние во время работы; Ш - восстановительный период после выполнения упражнения; 1 - алак-татный, 2 - гликолитический компоненты кислородного долга (по Волкову Н. И., 1986).

Для профессиональной деятельности это имеет вполне определенное значение: чтобы нетренированный человек был способен длительное время выполнять свою профессиональную работу, в которой задействованы большие мышечные группы, он не должен превышать мощности, соответствующей примерно 50%-му уровню МПК или своего анаэробного порога. С другой стороны, люди, систематически тренирующиеся в упражнениях на выносливость, способны не только увеличить МПК, но и правильно построенной тренировкой поднять порог анаэробного обмена до 60% и выше уровня мощности МПК, а также минимизировать свои энерготраты за счет совершенствования техники рабочих движений. Для профессионально-прикладной подготовки путь повышения физической работоспособности через увеличение аэробной эффективности менее рискован и наиболее приемлем, так как не требует значительного увеличения рабочей ЧСС и потому доступен всем возрастным категориям людей. Именно с этим связано широкое распространение оздоровительного бега трусцой и аналогичных по физиологическому воздействию других средств физической подготовки.
 
Во время выполнения относительно легкой работы, когда потребление кислорода не превышает 50% от максимума (с продолжительностью до нескольких часов), большая часть энергии поставляется мышцам за счет окисления жиров. Во время более напряженной работы, когда потребление кислорода превышает 60% от максимума, значительная часть энергии поставляется уже и за счет окисления углеводов. При мощности работы, близкой к критической, подавляющую часть энергопродукции обеспечивает окисление углеводов.
 
В реальных условиях физических нагрузок, как правило, задействованы все биоэнергетические системы. В зависимости от мощности, продолжительности и вида выполняемой работы меняется лишь соотношение механизмов её энергообеспечения (см.рис. 8). Однако, совершенство методики физической тренировки заключается в том, чтобы добиться наибольшего прироста спортивной или профессиональной работоспособности с наименьшими затратами энергии и времени. Это становится возможным при направленном, избирательном тренировочном воздействии на отдельные компоненты физической работоспособности,  но  не  при  использовании физических нагрузок «внавал», т. е. по прин¬ципу «сколько выдержишь».
 
Энергетика мышечной деятельности 
 
Рис. 11. Динамика потребления кислорода (ПК) и концентрации молочной кислоты в крови (МК) у тренированного испытуемого (мастера спорта в беге на 5000 м) при непрерывной работе на третбане со ступенчатым повышением скорости бега через каждые 2 минуты на 04 м/с. 1 - динамика ПК; 2 - динамика концентации МК в крови; V - скорость бега на уровне ПАНО; V - критическая скорость. 
Е.Захаров, А.Карасёв, А.Сафонов
 
РЕКЛАМА
КУЛИНАРИЯ, РЕЦЕПТЫ

Кулинарные эксперименты: как приготовить вкусные закуски из необычных ингредиентов

Удивите своих гостей необычными и оригинальными закусками, приготовленными из необычных ингредиентов, и наслаждайтесь неповторимым вкусом и яркими впечатлениями!
НОВЫЕ ПУБЛИКАЦИИ ПО РУБРИКАМ
Дети
Дети
Домашние животные
Животные
Праздники
Праздники
Образование
Образование
Мода
Мода
Досуг
Досуг
Спорт
Спорт
Отдых
Отдых
ДОМ, СТРОИТЕЛЬСТВО, РЕМОНТ

Как выбрать отопление для дома: системы, энергоэффективность, рекомендации.

Как выбрать отопление для дома: системы, энергоэффективность, рекомендации.Узнайте, как правильно выбрать систему отопления для вашего дома, учитывая энергоэффективность и получите полезные рекомендации по выбору.
ТЕХНИКА И ТЕХНОЛОГИИ

Глобальная связь: как технологии помогают нам быть на связи

Глобальная связь: как технологии помогают нам быть на связиСтатья рассказывает о том, как современные технологии способствуют глобальной связи и о том, как они помогают нам оставаться на связи в любое время и в любой точке мира.
КРАСОТА

Как прекрасно выглядеть без макияжа: естественные средства красоты

Как прекрасно выглядеть без макияжа: естественные средства красотыУзнайте, как достигнуть идеального естественного внешнего вида без использования макияжа с помощью натуральных средств красоты.
Реклама на портале
ПОЛЕЗНЫЕ РЕСУРСЫ







Контакты
Хотите с нами связаться? Вам сюда!
ЗДОРОВЬЕ

Вегетарианство и веганство: правильные подходы к питанию

Вегетарианство и веганство: правильные подходы к питаниюУзнайте о правильных подходах к питанию вегетарианцев и веганов, чтобы вы получали все необходимые питательные вещества и держали свое здоровье в отличной форме.

Как сохранить здоровую память и снизить риск развития болезни Альцгеймера

Как сохранить здоровую память и снизить риск развития болезни АльцгеймераУзнайте, какие методы помогают сохранить здоровую память и снизить риск развития болезни Альцгеймера, чтобы предотвратить потерю когнитивных способностей в будущем и оставаться ментально активным на протяжении всей жизни.

Витамины и минералы: для чего они нужны и как правильно принимать

Витамины и минералы: для чего они нужны и как правильно приниматьУзнайте, почему витамины и минералы важны для нашего здоровья и как правильно принимать их, чтобы получить максимальную пользу для организма.
ПАРТНЁРЫ
Мамусик.РУ
Стройка СМИ.РУ
ИНФОРМАЦИОННЫЕ ПАРТНЁРЫ
© Независимая Пресса 2014-2024
Информация об ограничениях Реклама на сайте
Полное или частичное копирование материалов с сайта запрещено без письменного согласия администрации портала Free-Press.RU
Яндекс.Метрика
Создание, поддержка и продвижение сайта - Leon